Data validation and diagnostics

LECTURE 11
Preamble

- Each step of a survey can generate errors in the data or the published statistics.

- It has been estimated that national statistical institutes spend some 40% of their resources on identifying errors and fixing them.

- This lecture focuses on errors, missing values (item nonresponse, or a respondent may give a wrong answer), and unit nonresponse (a respondent does not answer at all).

- They are largely responsible for overall data quality.
A bird’s-eye view of the survey process

Today’s focus is on steps 3 and 4

1. Setting survey objectives
 (lecture 1)

2. Questionnaire design and sampling design

3. Data collection and data entry
 The sample is drawn, data are collected from the sampled units and entered into the computer system at the statistical office

4. Data processing and data analysis
 Collected data are edited, missing and erroneous data are imputed, raising weights are determined

5. Publication and data dissemination
 (lecture 15)
Types of data errors
Types of errors

Errors can be classified in several ways:

1. **systematic** vs. **random** errors

2. **influential** vs. and **noninfluential** errors

3. **outliers** vs. **nonoutliers**

 but outliers are not necessarily errors: more on this in lecture 12
Random vs. systematic errors

- **Random errors** are not caused by a systematic deficiency, but by accident.

- In general statistics, the expectation of a random error is typically **zero**: errors compensate one another, on average.

- A **systematic error** is an error that occurs frequently between respondents.

- Classical example: **measurement unit error** – *e.g.* reporting consumption in kg instead of the requested grams.
Influential errors

- Errors that have a substantial influence on the statistics of interest are called **influential** errors.

- An influential value is often also an **outlier** (and vice versa)
 more on this in lecture 12
Fatal errors

- There is no definition of ‘fatal error’ in statistics

- We borrow the term ‘fatal error’ from computer science: if you get a fatal error, you generally cannot recover from it, because the computer encounters a problem it cannot resolve.

- So, what could be a ‘fatal error’ in our context, when we begin the survey on day one, with the data collection on the field?
Interviewer falsification of survey data

- A subtle form of falsification may consist in surveying a wrong household member, or in conducting the survey by telephone when face-to-face interviews are required.

- A severe form of falsifying is the fabrication of entire interviews without ever contacting the respective household.

- Fabricated interviews can have serious consequences for statistics based on the survey data.
Growing literature

Interviewer Cheating: Implications for Research on Entrepreneurship in Africa

David E. Harrison and Stefanie I. Krauss

Abstract

Interviewer cheating has seldom been studied or discussed as a problem in the literature. This article therefore begins with a brief review of this problem area, which is of utmost importance especially for entrepreneurship research in a Third World context. In the Third World, the allocation of financial support is often based on interview surveys. After
Prevention
3 layers

1. **Study design**
 Ensuring reasonable interview length
 Creating positive work conditions and avoiding unrealistic production quotas
 Interviewer compensations on a per hour, not a per interview basis

2. **Interviewer selection**
 Employment of interviewers with personal interest in the data quality (e.g., students)
 Little interviewer experience to reduce likelihood of knowledge on cheating opportunities in the system

3. **Subsequent interviewer inspection**
 Interview verification via random checks
Ruling out horror stories

Judge and Schechter (2009)

“Horror stories are common in which somebody discovers that one (or more) enumerator answers the survey himself rather than actually interviewing households (...)

It would be useful to become aware of this as early as possible in the data collection process.
Benford’s law – I/III

- How to recognize survey data irregularities, manipulated outcomes, and abnormal digit and number occurrences?

- The use of Benford’s law offers one possibility.

- Frank Benford was physicist who noticed that the pages in logarithmic tables containing the logarithms of low numbers (1 and 2) were more used than pages containing logarithms of higher numbers (8 and 9).
Benford’s law – II/III

Benford began to investigate the distribution of leading digits in a wide range of collections of numbers (numbers on the first page of a newspaper, street addresses, molecular weights...). Here is the law that regulated them:

\[\text{Prob(leading digit} = d) = \log_{10} \left(1 + \frac{1}{d} \right) \]

The ‘d’ in the denominator is responsible of the fact that numbers with a first digit of 1 are observed more often than those starting with 2, 3, ..., 9. Next slide illustrates.
Benford’s law – III/III
first significant digit

- According to B’s “law”, the leading digit in a number is more likely to be small than large.
- If numbers were equally likely to appear as the leading digit, each would have a $1/9 = 11.1\%$ probability.
- According to the law, the number 1 appears as the leading significant digit about 30% of the time.
- The number 9, less than 5% of the time.
Check the data and test hypothesis

- The basic idea of using Benford’s law to detect fabricated data is that falsifiers are unlikely to know the law or to be able to fabricate data in line with it.

- A strong deviation of the leading digits from Benford’s distribution in a dataset indicates that the data might be faked.

- Hypothesis testing is what we need.
Table 6
Correlations (r), the m Statistic, Distance d^* and a^*, χ^2 Tests, and Kuiper V_{N^*} Tests between Benford’s Law and Crop Quantities Produced

<table>
<thead>
<tr>
<th>Country</th>
<th>Surveys</th>
<th>Observations</th>
<th>r</th>
<th>m</th>
<th>d^*</th>
<th>a^*</th>
<th>χ^2</th>
<th>V_{N^*}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bangladesh (1996)</td>
<td>4,522</td>
<td>7,357</td>
<td>0.93</td>
<td>0.065</td>
<td>0.085</td>
<td>0.039</td>
<td>440.92**</td>
<td>8.27**</td>
</tr>
<tr>
<td>Ghana (1998)</td>
<td>294</td>
<td>799</td>
<td>0.99</td>
<td>0.016</td>
<td>0.026</td>
<td>0.010</td>
<td>8.45</td>
<td>0.85</td>
</tr>
<tr>
<td>Mexico (Oct 98)</td>
<td>24,067</td>
<td>10,028</td>
<td>0.84</td>
<td>0.154</td>
<td>0.169</td>
<td>0.059</td>
<td>3959.21**</td>
<td>15.45**</td>
</tr>
<tr>
<td>Mexico (May 99)</td>
<td>22,328</td>
<td>9,659</td>
<td>0.88</td>
<td>0.134</td>
<td>0.155</td>
<td>0.075</td>
<td>3145.46**</td>
<td>13.14**</td>
</tr>
<tr>
<td>Pakistan (July 86)</td>
<td>927</td>
<td>874</td>
<td>0.97</td>
<td>0.040</td>
<td>0.058</td>
<td>0.036</td>
<td>31.62**</td>
<td>1.84**</td>
</tr>
<tr>
<td>Pakistan (Oct 86)</td>
<td>909</td>
<td>181</td>
<td>0.86</td>
<td>0.100</td>
<td>0.128</td>
<td>0.016</td>
<td>23.37**</td>
<td>1.40**</td>
</tr>
<tr>
<td>Pakistan (Jan 87)</td>
<td>882</td>
<td>563</td>
<td>0.99</td>
<td>0.047</td>
<td>0.062</td>
<td>0.046</td>
<td>20.71**</td>
<td>1.13</td>
</tr>
<tr>
<td>Pakistan (Mar 87)</td>
<td>854</td>
<td>46</td>
<td>0.94</td>
<td>0.051</td>
<td>0.090</td>
<td>0.028</td>
<td>4.79</td>
<td>0.73</td>
</tr>
<tr>
<td>Pakistan (Apr 87)</td>
<td>845</td>
<td>191</td>
<td>0.96</td>
<td>0.041</td>
<td>0.078</td>
<td>0.059</td>
<td>15.90**</td>
<td>1.13</td>
</tr>
<tr>
<td>Pakistan (July 87)</td>
<td>831</td>
<td>658</td>
<td>0.97</td>
<td>0.033</td>
<td>0.061</td>
<td>0.022</td>
<td>43.75**</td>
<td>0.95</td>
</tr>
<tr>
<td>Pakistan (Jan 88)</td>
<td>813</td>
<td>728</td>
<td>0.96</td>
<td>0.046</td>
<td>0.069</td>
<td>0.001</td>
<td>41.45**</td>
<td>1.41**</td>
</tr>
<tr>
<td>Pakistan (Mar 88)</td>
<td>809</td>
<td>69</td>
<td>0.92</td>
<td>0.048</td>
<td>0.096</td>
<td>0.050</td>
<td>8.11</td>
<td>1.16</td>
</tr>
<tr>
<td>Pakistan (Aug 88)</td>
<td>804</td>
<td>559</td>
<td>0.99</td>
<td>0.022</td>
<td>0.038</td>
<td>0.027</td>
<td>15.44</td>
<td>0.77</td>
</tr>
<tr>
<td>Pakistan (Jan 89)</td>
<td>802</td>
<td>708</td>
<td>0.99</td>
<td>0.034</td>
<td>0.057</td>
<td>0.054</td>
<td>26.23**</td>
<td>1.27</td>
</tr>
<tr>
<td>Pakistan (Mar 89)</td>
<td>766</td>
<td>200</td>
<td>0.78</td>
<td>0.100</td>
<td>0.141</td>
<td>0.037</td>
<td>29.67**</td>
<td>2.11**</td>
</tr>
<tr>
<td>Pakistan (Aug 89)</td>
<td>759</td>
<td>691</td>
<td>0.98</td>
<td>0.025</td>
<td>0.045</td>
<td>0.020</td>
<td>22.48**</td>
<td>1.06</td>
</tr>
<tr>
<td>Pakistan (Oct 91)</td>
<td>726</td>
<td>1,095</td>
<td>0.99</td>
<td>0.022</td>
<td>0.033</td>
<td>0.017</td>
<td>18.72**</td>
<td>1.16</td>
</tr>
<tr>
<td>Paraguay (1999)</td>
<td>298</td>
<td>1,412</td>
<td>0.99</td>
<td>0.026</td>
<td>0.036</td>
<td>0.025</td>
<td>30.36**</td>
<td>1.21</td>
</tr>
<tr>
<td>Paraguay (2002)</td>
<td>223</td>
<td>1,632</td>
<td>0.97</td>
<td>0.050</td>
<td>0.065</td>
<td>0.051</td>
<td>101.34**</td>
<td>2.69**</td>
</tr>
<tr>
<td>Peru (1985)</td>
<td>2,349</td>
<td>8,050</td>
<td>0.99</td>
<td>0.026</td>
<td>0.042</td>
<td>0.030</td>
<td>287.76**</td>
<td>4.23**</td>
</tr>
<tr>
<td>Peru (1991)</td>
<td>594</td>
<td>2,495</td>
<td>0.98</td>
<td>0.047</td>
<td>0.086</td>
<td>0.102</td>
<td>228.02**</td>
<td>5.47**</td>
</tr>
<tr>
<td>Peru (1994)</td>
<td>1,336</td>
<td>4,101</td>
<td>0.98</td>
<td>0.038</td>
<td>0.064</td>
<td>0.059</td>
<td>246.39**</td>
<td>4.63**</td>
</tr>
<tr>
<td>South Africa (1993)</td>
<td>1,412</td>
<td>543</td>
<td>0.99</td>
<td>0.097</td>
<td>0.134</td>
<td>0.159</td>
<td>79.34**</td>
<td>3.89**</td>
</tr>
<tr>
<td>South Africa (1998)</td>
<td>1,075</td>
<td>788</td>
<td>0.96</td>
<td>0.082</td>
<td>0.108</td>
<td>0.118</td>
<td>97.48**</td>
<td>3.68**</td>
</tr>
<tr>
<td>Vietnam (1992)</td>
<td>4,800</td>
<td>20,936</td>
<td>0.99</td>
<td>0.034</td>
<td>0.049</td>
<td>0.045</td>
<td>762.36**</td>
<td>7.80**</td>
</tr>
<tr>
<td>Vietnam (1998)</td>
<td>6,002</td>
<td>24,420</td>
<td>0.98</td>
<td>0.035</td>
<td>0.055</td>
<td>0.053</td>
<td>1092.93**</td>
<td>9.64**</td>
</tr>
</tbody>
</table>

Note: * indicates 95 percent and ** indicates 99 percent significantly different from Benford.
Data editing
Data editing and imputation

- The occurrence of nonresponse and errors makes it necessary to carry out an extensive process of checking the collected data, and, when necessary, correcting them.

- This checking and correction process is referred to as “statistical data editing and imputation”.

To edit or not to edit?
a general principle – (de Waal et al. 2011: 13)

- The best editing technique is ... no editing at all, but instead ensuring that correct data are obtained during the data collection phase.

- To minimize errors, use computer-assisted data collection

- When an invalid response is given to a question during any of these data collection modes, this can be immediately reported by the computer that is used for data entry.

- The error can then be resolved by asking the respondent the relevant question(s) again.
Computer-assisted data collection

- **Paper-based** personal interviewing (PAPI), coupled with computer-assisted field-based data entry (CAFE) was pioneered by the LSMS

1) Computer-Assisted **Personal** Interviewing (CAPI)

2) Computer-Assisted **Telephone** Interviewing (CATI)

3) Computer-Assisted **Self**-Interviewing (CASI)

4) Computer-Assisted **Web** Interviewing (CAWI)
Over-editing
a general principle

- It is not necessary to correct all data in every detail.

- Small errors in individual records are acceptable – they will not affect most of the statistics if interest.

- In order to obtain data of sufficiently high quality, it is usually enough to remove only the most influential errors.

- The boundary between overediting and creative editing is blurred (de Waal et al. 2011: 3).
Modern editing methods

- **Interactive editing**
 Specialist-assisted check of specified edits during or after data entry

- **Selective editing**
 Split the data into a ‘critical stream’ (records likely to contain influential errors) and a ‘noncritical stream’

- **Macro-editing**
 - aggregation method: verify if figures to be published seem plausible
 - distribution method: available data are used to construct the distribution of the variables and uncommon values are candidates for further inspection or editing

- **Automatic editing**
 records are edited by a computer without human intervention
Myanmar
Poverty and Living Conditions Survey 2015 (p.22)

- Before data entry: check of all the questionnaires for completeness of the data coding mistakes, logical links
- During data entry: batch editing - data checking including skips, links and data outliers
- After data entry: cleaning of the data - checks out of range values, violated skip patterns and logical links as well as non-standard unit conversions.
Other errors

- **Missing data** are a special type of error and must be handled with great care.

- Missing data are well-known troublemakers for both data producers (NSIs) and the analysts, and will therefore deserve a bit of our time today.
Missing data
Afghanistan
Living conditions survey 2016-17, Percentage missing values for selected variables

<table>
<thead>
<tr>
<th>Variable</th>
<th>Base population</th>
<th>Percent missing values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Individual-level variables</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Worked in business, organisation (12.2)</td>
<td>83,788</td>
<td>0.9</td>
</tr>
<tr>
<td>Person worked last month (12.6)</td>
<td>83,788</td>
<td>0.9</td>
</tr>
<tr>
<td>Days worked in past week (12.14)</td>
<td>34,772</td>
<td>2.1</td>
</tr>
<tr>
<td>Industry (12.16)</td>
<td>34,583</td>
<td>2.9</td>
</tr>
<tr>
<td>Place of birth (13.2)</td>
<td>155,680</td>
<td>0.7</td>
</tr>
<tr>
<td>Literacy (11.2)</td>
<td>121,829</td>
<td>0.9</td>
</tr>
<tr>
<td>Attended formal school (11.5)</td>
<td>121,829</td>
<td>0.8</td>
</tr>
<tr>
<td>Highest education grade completed (11.8)</td>
<td>52,422</td>
<td>2.1</td>
</tr>
<tr>
<td>Currently attending school (11.9)</td>
<td>41,178</td>
<td>1.7</td>
</tr>
<tr>
<td>Seeing disability (24.2)</td>
<td>155,680</td>
<td>0.3</td>
</tr>
<tr>
<td>Woman ever had a live birth (25.7)</td>
<td>17,163</td>
<td>3.6</td>
</tr>
<tr>
<td>Birth attendance (25.17)</td>
<td>17,163</td>
<td>4.6</td>
</tr>
</tbody>
</table>
Missing data

- The occurrence of missing data is physiological
- Missing data imply loss of precision (‘large’ standard errors) and potential bias of the parameter estimates
- The loss of precision is a direct consequence of the smaller sample size implied by the presence of missing data
- The potential for bias is usually of far greater concern, and it all depends on the underlying nonresponse mechanism
- What do we mean by the underlying “nonresponse mechanism”, exactly?
A most useful reference
Little and Rubin (2019)

- **Definition**
 “Missing data are unobserved values that would be meaningful for analysis if observed; a missing value hides a meaningful value.”

- **Mechanism**
 Why are data missing?
 Different mechanisms lead to different strategies for treatment
What causes missing data?

- This is a difficult question.

- While the reality is complex, we can grasp the essence of the discussion by focusing on two different mechanisms:
 1. “missing completely at random” (MCAR)
 2. “missing not at random” (MNAR)
MCAR
missing completely at random

- Data are MCAR when, for instance, a respondent forgets to answer a question or when a random part of the data is lost while processing it.
- Technically, when missing data are MCAR, the probability that a value is missing does not depend on the value of the target variable or on the values of auxiliary variables.
- Loosely, data are MCAR when data are missing by accident.
- Under MCAR, we have no reason to believe that missing data are different from observed data: the observed data can be regarded as a random subset of the complete data.
Unfortunately, MCAR rarely occurs in practice
MNAR
missing not at random

- Data are MNAR when, for instance, reported values of income are more likely to be missing for persons with a high income.

- Technically, when missing data are MNAR, the probability that a value is missing does depend on the value of the target variable, and possibly also on the values of auxiliary variables.

- This situation is the hardest to deal with analytically, which is unfortunate because it may be the most likely.
How to deal with missing data?

- It depends.

- If data are **MCAR**, then observed data can be thought of as a random sample of the complete data, and statistical inference can be carried out based on “complete cases”. Simply put, missing data can be ignored.

- If data are **MNAR**, the mechanism is referred to as non-ignorable missingness: observed data cannot be treated as if they were a random sample of the complete data. Standard estimation methods would produced biased estimates.
To impute or not to impute?

- Methods to deal with missing data are countless

- Four categories:

 1. Procedures based on completely recorded units
 2. Weighting procedures
 3. Imputation
 4. Model-based methods
Procedures based on completely recorded units
strategy I/IV

- **Strategy 1** consists in discarding incomplete records (that is, records with missing values) and analyzing only the units with complete data.

- For a data analyst, it is easy to implement and may be satisfactory with small amounts of missing data.

- What do you think?

- It can lead to serious bias, however, and it is not efficient (large standard errors).
Weighting procedures
strategy II/IV

- Estimates from survey data are typically based on Horvitz-Thompson (HT) estimators.

- Take the sample mean, for example:

\[\bar{y}_{HT} = \sum_{i=1}^{n} \pi_i^{-1} y_i / N \]

- where \(n \) is the number of sampled units, \(N \) is the population size, and \(\pi_i \) is the known probability of inclusion in the sample for unit \(i \).

- Strategy 2 deals with missing data by modifying the weights to adjust for different response rates. Similar to standard adjustment for unit nonresponse.
Imputation
strategy III/IV

- **Strategy 3** imputes the missing values, and analyzes the resultant completed data by standard methods.

- Popular imputation methods:
 - **Hot deck imputation**
 each missing value is replaced with an observed value from a “similar” unit
 - **Mean imputation**
 means from units with recorded values are substituted
 - **Regression imputation**
 the missing variables for a unit are estimated by predicted values from the regression on the known variables for that unit
Model-based methods
strategy IV/IV

- **Strategy 4** - A broad class of procedures is generated by defining a *model* for the *complete data* and basing inferences on the likelihood distribution under that model.
Recap

- Fatal errors
 forewarned is forearmed

- Systematic vs. random errors
 randomness is preferable

- How serious is the incidence of missing values?
 Check and document

- Is there any pattern in the data missingness?
 MCAR vs. MNAR

- How to deal with missing values?
 Should we ignore them? Or should we impute them?
 It depends on the mechanism (MCAR vs. MNAR)
Data validation and diagnostics
The question

- Even after editing and imputation, some errors typically remain in the datasets circulated and shared with analysts.

- Analysts wonder if the datasets they receive qualify as a “high quality” dataset.

- Data validation help to answer
Data validation: a working definition

- **Data validation** is a complex activity aimed at verifying that data intended to be used for analytical purposes are **cleaned** and **consistently organized** into datasets.

- The **GIGO** principle
 “Garbage in, garbage out”
Data validation: what is it?

1. **Range checks**
 simplest edit one can think of (details coming shortly)

2. **Internal consistency checks**
 combination of edits

3. **Outlier detection**
 investigation of extreme values (next lecture)

4. **Other data quality checks**
Range checks
Range checks

- **Range checks** aim at determining whether provided values are within allowable (legal) minima and maxima.

- Example: checking that the variable recording responses to question “Is ... female or male?” only takes values 1 or 2, which are the allowed (legal) response codes.

- Other examples?
Examples

- ‘age cannot be negative’

- Your turn: ……………… cannot be …………………

- ‘profit must be smaller than or equal to revenue’

- Your turn: ……………… must be ………………… to …………………

- …
Possible outcomes

- **Error**
 the data are rejected.

- **Warning**
 the data can be accepted, with some corrections or explanations from the data provider;

- **Information**
 the data are accepted. No error.
What if you come across an error?
Fellegi and Holt (1976: 17)

When a record fails some of the edits, we have, theoretically, five options:

1. Check the original questionnaires in the hope that the original questionnaire is correct and the edit failures are caused by coding error or error introduced during the conversion of data to machine-readable form;
2. Contact the original respondent to obtain the correct response (or verify that the reported response was correct in its original form);
3. Have clerical staff “correct” the questionnaire using certain rules which would remove the inconsistencies;
4. Use the computer to “correct” the questionnaire, also using certain rules which would remove the inconsistencies;
5. Drop all records which fail any of the edits or at least omit them from analyses using fields involved in failed edits.
Internal consistency checks
Internal consistency checks

- **Internal consistency checks** are intended to ensure that the information provided by the respondents contains no inconsistencies. Typically: ‘in-record’ (cross-variable) validation rules.
Consistency between “Relationship to the head of the household” and “Marital status”: if the relationship to the head of the household is "Spouse", then the individual must be married or in union; if there is a "Spouse/Partner" in the household, then the head of household must be married or in union.
Other checks
Other data quality checks

- A fourth type of checks can be designed and implemented with the aim of gaining insight into the overall data quality.

- Focus on two variables:
 1) the age reported by the households for each member
 2) the expansion factors
Visualizing expansion factors
Namibia Household and Expenditure Survey – 2015/2016 report

Sample

Population census
The Whipple Index
Measure of age heaping

\[W = \frac{\sum (n_{25} + n_{30} + \cdots + n_{65} + n_{70})}{\frac{1}{5} \sum_{i=23}^{72} n_i} \]

- An index value of 500 indicates perfect heaping on multiples of five (all individuals report ages ending in 0 and 5); a value of 100 no heaping at all.

- What do we get for the 2013/14 HIES data?

- How to interpret this value? See next slide...
Visualizing age heaping

Pakistan, 2013/14 HIES

Namibia, 2015/2016
United Nations Standards

- Two questions:
 1) What do we know about other countries?
 2) How confident we are about the interpretation of the Whipple index as a summary measure of data quality?

<table>
<thead>
<tr>
<th>Whipple's Index</th>
<th>Quality of data</th>
<th>Deviation from perfect</th>
</tr>
</thead>
<tbody>
<tr>
<td><105</td>
<td>Very accurate</td>
<td><5%</td>
</tr>
<tr>
<td>105–110</td>
<td>Relatively accurate</td>
<td>5–9.99%</td>
</tr>
<tr>
<td>110–125</td>
<td>OK</td>
<td>10–24.9%</td>
</tr>
<tr>
<td>125–175</td>
<td>Bad</td>
<td>25–74.99%</td>
</tr>
<tr>
<td>>175</td>
<td>Very bad</td>
<td>>=75%</td>
</tr>
</tbody>
</table>
Short Answers

What do we know about other countries?
How confident we are about the interpretation of the Whipple index as a summary measure of data quality?

- What if, rather than data quality, Whipple’s index captures literacy, numeracy... ultimately, living standards?
Lessons learned

- Errors are ubiquitous
- Data validation techniques are meant to localize and fix errors
- A special type of error is missing data
- The key issue is whether the reasons for missingness are related to the outcome of interest. When data are MCAR, the impact of missing data is relatively benign. When data are MNAR, then ignoring missing data would lead to biased estimates.
- Imputation of missing values – best method depends on the nonresponse mechanism.
- Data validation and diagnostic should be routine
- A proper documentation of the validation process is an integral part of the metadata to be published
Useful references

Methodology for data validation 1.1
Revised edition 2018
References

Required readings

Suggested readings

Thank you for your attention
Homework
Exercise 1 – Engaging with the literature

- Finn and Ranchhod (2017) study the implications of data fabrication in practice, using the case of South Africa.
- Read the paper and summarize its main methods and findings.
Exercise 2 – Methods for detecting ‘fakes’

- Summarize the main findings of Bredl et al (2012), and compare their method with Finn and Ranchhod (2017)

A statistical approach to detect interviewer falsification of survey data

Sebastian Bredl, Peter Winker and Kerstin Kötschau

Abstract

Survey data are potentially affected by interviewer falsifications with data fabrication being the most blatant form. Even a small number of fabricated interviews might seriously impair the results of further empirical analysis. Besides re-interviews, some statistical approaches have been proposed for identifying this type of fraudulent behaviour. With the help of a small dataset, this paper demonstrates how cluster analysis, which is not commonly employed in this context, might be used to identify interviewers who falsify their work assignments. Several indicators are combined to classify ‘at risk’ interviewers based solely on the data collected. This multivariate classification seems superior to the application of a single indicator such as Benford’s law.

Key Words: Data fabrication; Falsifier; Benford’s law; Cluster analysis.
Exercise 3 – Computer-assisted data collection modes

- Summarize the discussion of the pros and cons of the four modes of data collection in De Waal et al. 2011, p. 14.
Exercise 4 – Data imputation – I/II

- Review the imputation procedures described in the following reports:

 - Cambodia, 2011 p. 89/90
 - Kenya, 2005 p. 24/25
 - Zambia, 2015 p. 100/101
 - South Africa, 2014 p. 63/64
Exercise 4 – Data imputation – II/II

- How did these countries deal with missing data and outliers?
- Based on the lessons learned in this lecture, what is your opinion about each method used?

Links to the reports: